
Chariot Technologies Lab., Inc.

919, North Market Street, Suite 950,

Wilmington, County of New Castle,

DE, Zip 19801

www.chariotlab.com

A major breakthrough

in Computer Science

http://www.chariotlab.com/

Conditional statements -

bottleneck for computing

In most cases processors

are unable to execute
conditional statements

as fast as arithmetic operations

«if-do/else»

statements

Slow
2 clock cycles

not possible
for multilevel tasks

High power
consumption

Executed

by Digital
Comparator

Arithmetic

operations

Quick
1 clock cycle

Easily
parallelized

Low power
consumption

Executed

by Arithmetic
Unit

PROCESSING PARALLEL EXECUTION
 POWER CONSUMPTION
 MODULE IN ALU

consume significant computing and timing resources to execute

As a result searching, sorting, comparison algorithms, machine-learning tasks

and many other programs comprising (multi-level) conditional statements

problem

02

resulting in fundamental change of executing
logical conditions on both and
levels

software hardware

Solution

FIONa - “NO IF”

technology

FIONa transforms conditional
statements into full arithmetic
equivalent

Completely new way of conditional
statements processing since first
integrated circuit was invented!

03

leading to dramatic improvement of execution speed
of logical tasks

Conditional statements involve comparisons of values
of the

represented by three main CMP operations that can
be resolved with specific arithmetic formulas

(the “IF part” “IF A=><B_ DO y, ELSE DO z”)

Solution

04

CMP operation

type

A = B A < B A > B

Arithmetic

EQUIVALENT

ANSWER = Formula 1 answer = formula 2 answer = formula 3

answer is always TRUE (1) or FALSE (0) – to be applied to (if TRUE) or (if FALSE)“DO y” “ELSE DO z”

The magic

of conversion

Solution

Universal character

with vast perspectives

Being a purely mathematical

solution, FIONa:

05

allows conversion of any program code into

a single linear arithmetic formula which opens
up vast opportunities for optimized processing

is universal and can be implemented at any level

 – from high-level programming language source
code to Instruction Set Architecture

Solution

Limitations
and effects

06

FIONa techniques are aimed at
accelerated execution of conditional
statements only. Arithmetic operations
are not the subject of this innovation

The level of acceleration depends

on the share of conditional statements –
the more conditional statements

to resolve, the greater the FIONa speed
advantage

SOFTWARE IMPLEMENTATION

Example

of conversion

07

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

// Python standard code (with IFs)

answer = 0

if num > 1:

 answer = 2

elif num < 1:

 answer = 1

else:

 answer = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

// FIONa-modified equivalent Python code (no IFs)

answer = 0

dif = num - 1

alt_dif = 1 - dif

res = ((1<<abs(dif)-dif) % 2) * 2 + (1<<abs(alt_dif)-alt_dif) % 2

SOFTWARE IMPLEMENTATION

«CMP free» assembly

after conversion

08

1

2

3

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

int std_compare(int a, int b){

 return a == b;

}

1

2

3

int our_simple_compare(int a, int b){

 return (1 << (a-b)) % 2;

}

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

std_compare(int, int):

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-4], edi

 mov DWORD PTR [rbp-8], esi

 mov eax, DWORD PTR [rbp-4]

 cmp eax, DWORD PTR [rbp-8]

 sete al

 movzx eax, al

 pop rbp

 ret

1

2

3

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

our_simple_compare(int, int):

 mov ecx, edi

 sub ecx, esi

 mov eax, 1

 sal eax, cl

 mov edx, eax

 shr edx, 31

 add eax, edx

 and eax, 1

 sub eax, edx

 ret

C code Standard (std)
Assembler equivalents

(for X86_X64 architecture)

FIONa-converted source code produces
less and more compact assembly
instructions

C code FIONa (OUR)

SOFTWARE IMPLEMENTATION

FIONa-powered

Python interpreter

09

Instead of modifying every source code
FIONa conversion can be embedded
straight into a Python interpreter

PYTHON CODE comprising

x conditional statements

regular

EXECUTION

Accelerated

EXECUTION

standard

interpreter

fiona-powered

interpreter

software implementation Test results

FIONa-powered vs

standard algorithms

10

Task Task Details STANDARD algorithm FIONa-powered algorithm Hardware

UNIVERSAL TEST Matrix comparison 1,000,000,000 elements each
353,7 sec. (Python)

239,6 sec. (Python/Numba)

9,3 sec. (Python)

4,6 sec. (Python/Numba)

Intel(R) Core(TM)
i7-8565U CPU

MACHINE LEARNING

DLRM (Pytorch) recom. model

Polyfit (TensorFlow/Pytorch)

K-mean clustering
(TensorFlow/Pytorch)

CTR prediction dataset

Spring Data dataset

Classification &
Clusterisation dataset

38 epoch - 56 min. (loss - 0,52)

3 sec. (accuracy - 0,75)

15 sec.

49 epoch - 48 min. (loss - 0,35)

3 sec. (accuracy - 0,93)

10 sec.

McBook Pro 13' 2020
M1

DATA PROCESSING Prime number factorization Factorization of

80-bit prime number 24 hours 5 min. MacBook Pro 15,

2017 (core i7)

SEARCHING Array search Dataset (10,000 words

in 200 pages) 57 sec. 2 sec. MacBook Pro 15,

2017 (core i7)

OPTIMIZATION
Shortest way search task

Clustering + shortest way task

80 destin. points for 1 rider

100 destin. points for 2 riders

3,9 min. (Deep First Search)

8,3 min. (Google TensorFlow)

0,6 sec.

2 sec.

MacBook Pro 15,
2017 (core i7)

SOFTWARE IMPLEMENTATION

How it works

in hardware

11

STandard isa Modified ISA Standard CMP instructions

replaced by new fiona instructions

Result ResultResult Result

CMP INSTRUCTIONS CMP instructions

DCAU

Traditional ALU

AU AU

FIONa-powered alu

Arithmetic instructions Arithmetic instructions

Abbreviations:

ALU – Arithmetic Logic Unit

ISA – Instruction Set Architecture

CMP – ”compare” instructions

AU – Arithmetic Unit

DC – Digital Comparator (and/or AU zero state flags)

CMP operations can now be
processed by AU. Redundant DC
can be removed or replaced

HARDWARE IMPLEMENTATION

Architecture evolution –
CISC vs RISC

12

RISC

advantages:

Easier to increase  
proccessor clock speed

Simpler and faster  
processor structure

parallelisation

of (arithmetic)
operations possible

Lower power
consumption

RISC Small and simple

instructions

D C

CISC Large and complex

instructions vs

Abbreviations:

CISC – complex instruction set computer

RISC – reduced instruction set computer

DC – digital comparator and/or AU zero state flags

HARDWARE IMPLEMENTATION

Architecture evolution

– RISC vs FIONa

13

FIONa
advantages:

accelerated execution
of conditional
statements

1 clock vs 2 before

Parallel execution

of multilevel
conditional statements

not possible before

Lower power
consumption

More and
 processor

powerful
compact

Fiona No more DC and  
CMP instructionsRISC DC – still

a bottleneck

D C

vs

Abbreviations:

RISC – reduced instruction set computer CMP – compare instructions

DC – digital comparator and/or AU zero state flags

Same assembler algorithm was executed
from 1 to 3 mln. cycles on two architectures
(cmp operations set at 25% of total):

HARDWARE IMPLEMENTATION

FIONa-powered RISC-V
architecture

14

The first FIONa hardware prototype
was simulated on MakerChip design
platform

standard

1 CORE RISC-V

FIONa-powered

1 core RISK-V

depending on the number of cycles

2-3
better performance

FIONa over standard

problem solving

FIONa remedies serious
Spectre V2 vulnerability

15

affecting cores26-35% affecting cores50+%

FIONa allows to avoid branch
predictor speculations thus giving no
foundation for a Spectre Attack

Summary

16

A PASS TO

HIGH PERFORMANCE COMPUTING

FIONa techniques
represent a disruptive
approach in processing
of conditional
statements

Software
implementation
allows easy and
instant acceleration
of any program

Hardware embodiment

is most efficient

and just requires
conversion embedded
at ISA level

Optional adjustments to architecture
design (removal and replacement of
redundant blocks) can enhance
productivity and reduce physical size of
silicon

as it allows easy representation
of any program as a set

of arithmetic operations

But what is more important

FIONa paves the way

for many more innovations

